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The stability of municipal solid waste (MSW) landfills is a significant environmental concern. The performance of
landfills during earthquakes should be evaluated to ensure their stability. The geometry and material types of MSW
landfills are the main factors affecting their seismic response. In this study, the individual and coupled impact of
these factors is investigated using numerical analyses. Amplification factors (AFs =Accsurface/Accbase) are investigated
for six common MSW landfill types, namely canyon type, hill type, side-hill types 1 and 2 and stepped-base types 1
and 2. The results show that landfill types have significantly different behaviours due to their geometry and
waste material properties. For low stiffness contrasts, the stepped-base landfill type has the minimum and the hill
type experiences the maximum AF, 1.74 and 3.53, respectively. However, for high stiffness contrasts, the canyon
type has the minimum AF (0.46) due to the effect of damping and thickness of the waste. Therefore, the proper
geometry of the MSW landfills should be designed for specific waste material properties according to the seismic
response.

Notation
C damping matrix
M mass matrix
K stiffness matrix
c cohesion
Cs shear wave velocity
E elastic modulus
fmax maximum frequency of the waves carrying

energy
G elastic shear modulus
α mass-proportional damping constant
β stiffness-proportional damping constant
γ unit weight
ξ damping ratio
φ friction angle
ϑ Poisson’s ratio
ω natural frequency

1. Introduction
Environmental pollution from waste materials is one of the sig-
nificant hazard concerns for human lives (Hossain et al., 2011;
Isfahani et al., 2019; Misra and Pandey, 2005). More than 2.1
billion tonnes of municipal solid waste (MSW), one of the main
significant types of waste materials, are produced annually
around the world (IBRD, 2019). MSW is usually disposed in
geo-structures named landfills, which have their environmental
concerns, including soil, air and water contamination, that have

to be considered in sustainable development decision making
(Feng et al., 2018; Shu et al., 2018). Various types of failures
from liner cracks to minor slope failures have occurred on land-
fills subjected to strong earthquakes during the construction of
liner systems and waste filling, or after closure of the landfill.
For instance, 22 landfills in California, USA were subjected to
the Northridge earthquake of 17 January 1994 with a magni-
tude of 6.7; one suffered significant damage, four experienced
moderate damage and 17 had minor or no damage. Most of the
damage caused cracking in the liner and the cover soil or tears
in the geomembrane. Investigation on the performance of ten
landfills, also in California, USA, during the Loma Prieta
earthquake of 17 October 1989 with a magnitude of 7.1 shows
major and minor crack displacements of the liners typically
between 25 and 75 mm and one with a minor downslope cover
soil movement. Studies show that the recorded peak ground
acceleration (PGA) has a direct relation with the intensity of
the damages. For example, during the Northridge event, the
Chiquita Canyon landfill, subjected to a high free-field PGA
of 0.39g, suffered the most notable damage, compared with
landfills subjected to PGAs of lower than 0.2g; the damage
consisted of tears between 3 and 23 m in length within the
geomembrane liner. Bradley and Lopez Canyon landfills were
subjected to an estimated free-field PGA of 0.45g and 0.44g,
respectively, causing a local tear in the geotextile overlying the
side-slope liner. In this regard, evaluation of the performance
of landfills during an earthquake becomes a significant issue
for geotechnical engineers designing MSW landfills.
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The seismic response to these structures is mainly caused by
two groups of characteristics: source and site effects. Source
effects are defined by the source of the earthquake, such as
earthquake magnitude, frequency, epicentral distance, depth
and duration, which are mostly uncontrollable by engineers
(Azhari and Ozbay, 2016, 2018; Havenith et al., 2003; Meunier
et al., 2008). However, site characteristics, including landfill
geometry and material stiffness contrast, are mainly controlled
by engineering design. Various research studies have evaluated
the impact of site effects on earthquake response of slopes
(Azhari and Ozbay, 2018; Bourdeau and Havenith, 2008; Del
Gaudio and Wasowski, 2011; Havenith et al., 2002, 2003; Ling
et al., 2015; Meunier et al., 2008; Moore et al., 2011;
Sepúlveda et al., 2005; Seyhan and Stewart, 2014; Si and
Midorikawa, 2000; Wang and Hao, 2002).

Azhari and Ozbay (2018) examined the effect of epicentral dis-
tance and depth on the earthquake-triggered failures of natural
slopes and tailings dams. The results showed that an epicentral
distance and depth of less than 100 and 40 km, respectively,
may cause failures on these types of slopes. Azhari and Ozbay
(2017) have numerically investigated the effect of valley and
hill topographies, as well as the soft topsoil layer, on the wave
acceleration amplification of the slopes. The analyses showed
that in hill geometries with soft topsoil layers, the wave may
amplify up to 16 times compared with valley geometries.
Havenith et al. (2003) evaluated the seismic amplification of
the Tien Shan Range, China, according to the morphology
and topography of the region. The study also numerically
examined the surface layer- and topography-dependent ampli-
fications using two- and three-dimensional modelling. Meunier
et al. (2008) investigated the earthquake-triggered failures near
Northridge, California, Chi-Chi, Taiwan and the Finisterre
Mountains of Papua New Guinea. It was observed that most
failures occurred on ridge crests and diverse geological sub-
strate locations. Moore et al. (2011) evaluated the dynamic
response of a large unstable rock slope at Randa, Switzerland.
The discrete-element numerical approach was used and showed
that the highly fractured top section of the slope is mostly
prone to failures and that site effects contributed less to the
seismic behaviour of hard rock slopes. Sepúlveda et al. (2005)
conducted a study on the Pacoima Canyon, California, which
was exposed to the 1994 Northridge earthquake (Mw= 6.7).
The results depicted a PGA of 1.6g recorded at ridges and less
than 0.5g at the bottom of the canyon, verifying the occurrence
of topographic amplification. Si and Midorikawa (2000)
studied the recorded ground motions from 21 earthquakes in
Japan. The data included 856 records for PGA and 394
records for peak ground velocity. The data were analysed based
on the epicentral distance and focal depth where their corre-
lations with site effects were examined. The results show that
generally deeper focal depth causes stronger ground motion.
Wang and Hao (2002) conducted a numerical parametric

study evaluating the effect of material variation on the slope’s
seismic response. It was found that the obtained surface
motions vary substantially if the random variants of soil prop-
erties and their saturation levels are considered in the analysis.

Previous studies show a significant seismic response amplifica-
tion due to the stiffness contrast between the bedrock and
the topsoil layer and sharp topographies such as ridges and
convex geometries. Amplification factor (AF ¼ PGAsurface=

PGAearthquake) as the defining parameter for seismic responses
of the structures was commonly utilised in these studies; it was
defined in the range 2–16, based on the slope geomechanical
and topographical characteristics. Although many research
studies have been performed on the seismic stability of natural
slopes, few studies have been conducted on the seismic
response of landfills, most of which used traditional pseudo-
static, pseudo-dynamic and Newmark methods (Bray et al.,
1995; Bray and Rathje, 1998; Chen et al., 2008; Choudhury
and Savoikar, 2011a, 2011b; Kramer and Smith, 1997; Ling
and Leshchinsky, 1997; Rathje and Bray, 2001).

Bray et al. (1995) conducted pseudo-static stability analyses of
the seismically induced deformation of landfills. The results
showed that the maximum horizontal acceleration for the waste
material would be twice that for the bedrock. Bray and Rathje
(1998), in another study, used the Newmark approach to esti-
mate the displacements caused by various earthquakes on
typical MSW landfills with heights of 10–90 m. Ultimately,
charts have been developed to predict the seismic-induced dis-
placements of these landfill structures. Chen et al. (2008) evalu-
ated the permanent seismic displacement of landfills along the
liners under various site conditions using the Newmark method.
The Newmark analyses showed that the frequency and ampli-
tude of the bedrock motion would vary the permanent displace-
ments of the landfill liners. Choudhury and Savoikar (2011a,
2011b) performed two studies in 2011, using pseudo-static and
pseudo-dynamic analyses on the stability of landfills under
seismic loading. It was concluded that the pseudo-static analysis
has limitations considering the variation of seismic inertial
forces with time. Additionally, they investigated the effects of
the vertical components of the shear and primary waves, which
may have a serious effect on the seismic response of these struc-
tures. As a result, they implemented the pseudo-dynamic
approach in their next study to overcome these limitations.
Kramer and Smith (1997) developed a modified Newmark
approach. Unlike the conventional Newmark method, which
neglects the dynamic response of the material above the failure
surface, this modified approach considers the effects of perma-
nent displacements of the material above the failure surface.
Rathje and Bray (2001) investigated the material depth of the
upper sliding layer using numerical finite-element and
Newmark methods. It was shown that the Newmark approach
will give a conservative result for deep overlaying material while
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more caution should be warranted for the shallow layers, com-
pared with the results of numerical analyses.

As noted, there are well-known limitations related to these
approaches, such as disregarding the frequency and duration
of the seismic wave, as well as the deformation parameters of
the ground, considering the failure on an explicit discontinuity,
and ignoring the upslope movement of the failure zone on
top of the discontinuity. Therefore, none of the conventional
approaches considers the actual ground and wave conditions,
such as complex geometries and material stiffness contrasts.
In contrast, the numerical approach is capable of overcoming
these limitations and accommodates wave propagation through
various geometries and material properties. However, a
limited number of studies have been carried out on the stability
and seismic response of landfills using numerical methods.
Choudhury and Savoikar (2009) evaluated the seismic response
of hill-type landfills based on the foundation characteristics. The
numerical analyses showed that the sequence of soft and stiff
foundation materials would increase the acceleration AF up to
four times. Zania et al. (2008) investigated the seismic perform-
ance of two landfill geometry types, namely hill and side-hill
landfills. It was concluded that the AF is related to the crest
width of the hill type and the crest itself shows the highest AF

among the monitored points. The hill type generally showed a
higher AF due to its convex geometry. According to the litera-
ture, there is much to be understood on the seismic response of
different landfill geometries with various material properties.

This study aims to evaluate the seismic response of typical
landfill geometries and material properties. In this regard, six
well-known landfill geometries, along with four levels of
material stiffness contrasts, are considered. The AF on the
monitored locations for each landfill type with different
material characteristics was obtained numerically and
compared with previous studies.

2. Numerical assessment of the seismic
response

As previously mentioned, the numerical approach could be the
most suitable method for the simulation of the seismic response
of landfills with various geometries and material characteristics.
Among the numerical methods, the Universal Distinct Element
Code (UDEC) is the code with the capability of modelling
both continuum and discontinuum media. This computer code is
able to provide the AF, simulating the geometry and material
properties of site effects that would affect the seismic response of
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Figure 1. Typical MSW landfill geometries used in the numerical analysis: (a) hill type, (b) canyon type, (c) side-hill type 1, (d) side-hill
type 2, (e) stepped-base type, (f) stepped-base and fill type
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Table 1. Shear strength parameters for MSW landfills

c: kPa φ: ° Comments References

23 24 Large direct-shear test on fresh shredded MSW (Edmonton) Landva and Clark (1990)
19 39 Large direct-shear test on typical fresh MSW (Blackfoot) Landva and Clark (1990)
16 33 Large direct-shear test on typical fresh MSW (Blackfoot) Landva and Clark (1990)
0 27 Large direct-shear test on 8-year-old artificial refuse (UNB) Landva and Clark (1990)
0 41 Large direct-shear test on 8-year-old artificial refuse (UNB) Landva and Clark (1990)
0 36 Large direct-shear test on typical old MSW (Hantsport) Landva and Clark (1990)
19 39 Large direct-shear tests on samples from old fill in Calgary Landva and Knowles (1990)
23 24 Large direct-shear tests on samples from freshly shredded fill in Edmonton Landva and Knowles (1990)
0 39–53 Direct-shear test at a landfill in southern California Siegel et al. (1990)
25 10 Strength properties of Hong Kong refuse Cowland et al. (1993)
15.7 21 NA Del Greco and Oggeri (1994)
22 22 NA Del Greco and Oggeri (1994)
10 23 NA Fassett et al. (1994)
5 34 NA Houston et al. (1995)
10 30 Typical MSW with sample size 150 cm� 150 cm Houston et al. (1995)
2–3 15–20 Triaxial test on 1–3-year-old MSW Grisolia et al. (1995)
24 0 For normal stress less than 30 kPa Kavazanjian et al. (1995)
0 30 For normal stress more than 30 kPa Kavazanjian et al. (1995)
21 17.8 Large direct-shear test on typical fresh MSW (Blackfoot) Pelkey et al. (2001)
5 21.8 Large direct-shear test on shredded MSW (Edmonton) Pelkey et al. (2001)
0 23 Large direct-shear test on wood waste (Edmonton) Pelkey et al. (2001)
12 37 Large direct-shear test on typical MSW (Hantsport NS) Pelkey et al. (2001)
0 26–29 Large direct-shear test on MSW Pelkey et al. (2001)
23.3 9.9 Triaxial test on 1.7-year-old MSW Zhan et al. (2008)
0 39 Triaxial test on 11-year-old MSW Zhan et al. (2008)
10 20 Data from back analysis of MSW Koelsch et al. (2005)
18 22 Suggested friction angle and cohesion data for MSW Koelsch et al. (2005)
15 15 Suggested friction angle and cohesion data for MSW Koelsch et al. (2005)
4–7 10–14 Triaxial test on 5-year-old MSW at 5% strain Feng (2005)
15–28 14–17 Triaxial test on 5–year-old MSW at 10% Strain Feng (2005)
30–58 17–19 Triaxial test on 5-year-old MSW at 15% Strain Feng (2005)
19 28 Data from back analysis of MSW Merry et al. (2005)
9–14 20–29 Direct-shear test and triaxial test Harris et al. (2005)
14 36 Direct-shear test data on fresh MSW with sample size 30 cm� 45 cm Singh et al. (2009b)
10 25.4 Results from a statistical analysis Jahanfar (2014)
1–40 28–35 Direct-shear test on MSW Reddy et al. (2011)
15 35 NA Giri and Reddy (2015)
4.7 31.9 Guangming, Shenzhen, China landfill of Ouyang et al. (2017)
10 25–30 New waste Tano et al. (2017)
5 22–24 Old waste Tano et al. (2017)
29 15.7 Direct-shear test on a sample from 4 m depth Feng et al. (2017)
24 19.6 Direct-shear test on a sample from 11 m depth Feng et al. (2017)
18 21.9 Direct-shear test on a sample from 16 m depth Feng et al. (2017)
20 35 NA Hubert et al. (2016)
13.7 22 Direct-shear test on the more degraded wastes Abreu and Vilar (2017)
4.4 40 Direct-shear test on the less degraded wastes Abreu and Vilar (2017)
14.5 22.5 Direct-shear test at 25 mm displacement from Ghazipur at Delhi, India Ramaiah et al. (2017)
16.6 33.4 Direct-shear test at 50 mm displacement from Ghazipur at Delhi, India Ramaiah et al. (2017)
6.2 26 Direct-shear test at 25 mm displacement from Ghazipur at Delhi, India Ramaiah et al. (2017)
14.4 34.6 Direct-shear test at 50 mm displacement from Ghazipur at Delhi, India Ramaiah et al. (2017)
10 23 Direct-shear test at 25 mm displacement from Ghazipur at Delhi, India Ramaiah et al. (2017)
11.1 35.4 Direct-shear test at 50 mm displacement from Ghazipur at Delhi, India Ramaiah et al. (2017)
27.5 27.1 Direct-shear test at 25 mm displacement from Ghazipur at Delhi, India Ramaiah et al. (2017)
28.8 40.4 Direct-shear test at 50 mm displacement from Ghazipur at Delhi, India Ramaiah et al. (2017)
20.7 25.8 Direct-shear test at 25 mm displacement from Okhla at Delhi, India Ramaiah et al. (2017)
22.7 38.5 Direct-shear test at 50 mm displacement from Okhla at Delhi, India Ramaiah et al. (2017)
9.9 25.1 Direct-shear test at 25 mm displacement from Okhla at Delhi, India Ramaiah et al. (2017)
16.2 37.4 Direct-shear test at 50 mm displacement from Okhla at Delhi, India Ramaiah et al. (2017)
18.5 21.5 Direct-shear test at 25 mm displacement from Okhla at Delhi, India Ramaiah et al. (2017)
21.3 37.4 Direct-shear test at 50 mm displacement from Okhla at Delhi, India Ramaiah et al. (2017)

NA, not applicable
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landfills. The geometrical and geomechanical data applied in
this numerical modelling are mainly obtained from the published
data on most typical MSW landfill types worldwide.

2.1 Considered geometries
As for geometries, there are six major landfill types illustrated
in Figure 1, namely, hill type, canyon type, side-hill type 1,
side-hill type 2, stepped-base type and stepped-base and fill
type. In 2010, Savoikar and Choudhury (2010) proposed these
six typical geometries to address the seismic stability for differ-
ent landfill configurations.

2.2 Material characteristics
A comprehensive study is conducted on the properties of MSW
landfills derived from more than 50 studies since 1990. The
material properties for the models, considering Mohr–Coulomb
as the behaviour model, are derived from the statistical analysis
of these data. This analysis is conducted on the shear strength
parameters cohesion (c), friction angle (φ), unit weight ðγÞ,
Poisson’s ratio (ϑ) and elastic modulus (E) of the waste material.
Table 1 presents the cohesion and friction angle according to the
literature defining the shear strength of the waste based on the
Mohr–Coulomb criteria, obtained from either a direct shear or a

Table 2. Unit weight data for MSW landfills

γ: kN/m3 Comments References

10–14 Dry density Landva and Knowles (1990)
5–7 Dry density Del Greco and Oggeri (1994)
3–9 For low compaction waste Fassett et al. (1994)
5–7.8 For medium compaction waste Fassett et al. (1994)
8.8–10.5 For good compaction waste Fassett et al. (1994)
10–12 Dry density Gabr and Valero (1995)
10.8–12.8 Dry density Withiam et al. (1995)
3.3 Surface Kavazanjian et al. (1995)
12.8 60 m depth Kavazanjian et al. (1995)
16 Average unit weight from the in situ test on Operating Industries, Inc.

(OII) landfill Superfund site
Matasović and Kavazanjian (1998)

10–16 Bulk density Pelkey et al. (2001)
10 Bulk density Machado et al. (2002)
9.1 Un-degraded MSW from Dona Juana sanitary landfill Caicedo et al. (2002)
5.3 Poor compaction Dixon and Jones (2005)
7 Moderate compaction Dixon and Jones (2005)
9.6 Good compaction Dixon and Jones (2005)
12.23 NA Jones and Dixon (2005)
11 NA Koelsch et al. (2005)
10 NA Dixon et al. (2006)
10.4 MSW landfill near Cincinnati, OH, USA Chugh et al. (2007)
9.4 4–6 m depth (a landfill in France) Stoltz et al. (2009)
11.5 6–12 depth (a landfill in France) Stoltz et al. (2009)
11.8 12–17 depth (a landfill in France) Stoltz et al. (2009)
16.6 17–22 depth (a landfill in France) Stoltz et al. (2009)
13.9 22–27 depth (a landfill in France) Stoltz et al. (2009)
16 27–32 depth (a landfill in France) Stoltz et al. (2009)
14.8 32–36 depth (a landfill in France) Stoltz et al. (2009)
10.2 NA Modak (2010)
11.2–16.2 NA Reddy et al. (2011)
7.8 Obtained from laboratory experiments on US MSW samples Bareither et al. (2010)
15 Borehole density test Matasovic et al. (2011)
14.6 Averages of reported data Giri and Reddy (2014)
11 Suzhou landfill, China Zhan et al. (2008)
11.1 Statistical analysis from the literature review Jahanfar (2014)
9.9 NA Sia and Dixon (2012)
9–12.6 New waste Tano et al. (2016)
10–12.8 Old waste Tano et al. (2016)
10 NA Hubert et al. (2016)
7.2–12.5 From surface to 16 m depth Hubert et al. (2016)
8.1–11 For shallow waste Abreu and Vilar (2017)
13.8–15.2 For deep waste Abreu and Vilar (2017)

NA, not applicable
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triaxial compressive test. Table 2 shows the commonly available
unit weight of the waste material according to its depth, age
and compaction condition. The Young’s elastic modulus and
Poisson’s ratio are shown in Table 3, representing the deformabil-
ity properties of the waste material. Statistical analyses are then
conducted on the data obtained for each material characteristic.
According to the analyses, the ‘best fit’ approach is applied
to the data and the probability density function (PDF) of each
parameter is derived accordingly. Figure 2 shows the statistical
PDF along with the mean and standard deviation values for the
shear strength, unit weight and elastic deformability parameters
of the waste material. From these graphs, the mean value of
each parameter is chosen for the analyses. It should be noted
that, although the unit weight of the waste material gradually
increases with depth, the more frequent value from the data ana-
lyses (Figure 2) is considered for the waste material. It should be
noted that the mechanical characteristics of the MSW landfill
material may change from country to country and city to city.
Therefore, a comprehensive literature review is performed to find
the most frequent properties. Moreover, the material character-
istics, including density, elastic modulus, Poisson’s ratio, friction
angle and cohesion, may vary with time. However, earlier

studies show that elastic modulus is the most controlling factor
affecting the seismic response of slopes. Therefore, in this study,
a variety of elastic modulus ratios is considered for the analyses
(Azhari and Ozbay, 2016; Gischig et al., 2015; He et al., 2010;
Masini et al., 2021; Psarropoulos et al., 2007).

Psarropoulos et al. (2007) conducted numerical analyses inves-
tigating the effect of soil and waste characteristics on the
seismic response of landfills. The numerical results proposed
that in addition to the seismic excitation and the landfill geo-
metry, material properties significantly affect the seismic
response of a landfill. Gischig et al. (2015) conducted a
distinct-element method numerical analysis on rock slope stab-
ility, evaluating the effect of geometry, stiffness contrast and
compliant fractures on the wave amplification. It was con-
cluded that the material stiffness contrast and internal fractures
cause significantly larger AFs compared with the ones caused
by the geometry. Azhari and Ozbay (2016) numerically
examined the effect of elastic modulus contrast between the
top layer and the foundation of tailings dams and natural
slopes. The results showed that increasing the stiffness contrast
ratio to 1:5 causes the wave acceleration to amplify up to 16

Table 3. Various published values for elastic parameters of MSW

E: MPa ϑ Comments References

40–120 NA Dynamic module from in situ testing Houston et al. (1995)
NA 0.25–0.33 Field measurements of Poisson’s ratio from Operating Industries, Inc. (OII)

landfill Superfund site
Matasović and Kavazanjian
(1998)

5–7 0.25 Landfill in Kahrizak, Tehran, Iran Fakharian and Taherzadeh
(2004)

130 0.3 Data from the landfill of Cincinnati, Ohio, USA Chugh et al. (2007)
0.5 0.3 NA Jones and Dixon (2005)
NA 0.2–0.3 Large-scale cyclic triaxial testing Zekkos et al. (2008)
0.5–0.7 0.05–0.15 Degradable and compressible (food, yard and animal waste) landfill of Ontario,

Canada
Singh et al. (2009a)

1.5–3 0.28–0.32 Reinforcing and tensile elements (paper, cardboard, flexible and rigid plastics and
tyres) landfill of Ontario, Canada

Singh et al. (2009a)

10–20 0.25–0.33 Soil-like material (demolition waste, cover soil and ash) landfill of Ontario, Canada Singh et al. (2009a)
75–110 0.26–0.49 Rigid and incompressible (metals, glass, wood and ceramic) landfill of Ontario,

Canada
Singh et al. (2009a)

0.7 0.45 During the construction of Coll Cardús landfill Yu and Batlle (2011)
7 0.3 After construction of Coll Cardús landfill Yu and Batlle (2011)
0.5 NA Long term of Coll Cardús landfill Yu and Batlle (2011)
NA 0.25 The first phase of degradation Varga (2011)
NA 0.45 The fifth phase of degradation Varga (2011)
6.1–12.1 NA Fly ash+ 0% quicklime Fatahi and Khabbaz (2013)
7.7–15.7 NA Fly ash+ 6.7% quicklime Fatahi and Khabbaz (2013)
10.7–21.5 NA Fly ash+ 13.3% quicklime Fatahi and Khabbaz (2013)
15.5–27 NA Fly ash+ 20% quicklime Fatahi and Khabbaz (2013)
19.6–36.1 NA Fly ash+ 26.7% quicklime Fatahi and Khabbaz (2013)
0.5 0.3 NA Zamara et al. (2014)
1.43 0.1 Intermediate MSW Sia and Dixon (2012)
2.55 0.1 Stiff MSW Sia and Dixon (2012)
0.5–1 0.2–0.3 New waste Tano et al. (2017)
1–1.2 0.3–0.4 Old waste Tano et al. (2017)

NA, not applicable
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times. Masini et al. (2021) investigated the site conditions of
earth dams in terms of stiffness contrast at the shell–core con-
tacts resulting in various deformation patterns after an
earthquake loading. He et al. (2010) studied the stiffness con-
trast of the overlying colluvium accumulation and the bedrock
for a typical alluvium accumulation slope exposed to a large
seismic excitation. The calculated amplifications revealed that
the velocity may amplify up to 2.5 times from the bedrock to
the overlying colluvium accumulation on the slope crest.
According to the literature, stiffness contrast may significantly
affect the seismic response of slopes, which can be observed
between different layers of landfill structures, including soil
base and waste material, base material and clay liner, and
waste material and cover layer. In this study, the main stiffness
contrast between the soil base and waste material is evaluated
in four levels of 1:1, 1:2, 1:10 and 1:20, in which the elastic

moduli of 5, 10, 50 and 100 MPa are selected for the simu-
lations based on the most common municipal waste material
presented in Table 3.

2.3 Dynamic analysis considerations in UDEC
Before applying the seismic load to the landfills, all models
are controlled to be stable statically. Subsequently, to perform
the dynamic analysis, some adjustments should apply to the
static model. The first set of considerations is boundary con-
ditions, mesh dimensions and damping ratios (Itasca
Consulting Group, 2014). These requirements, if adjusted,
ensure that the seismic waves travel through the medium
realistically. After considering the requirements of these
dynamic analyses, the next step is to apply the earthquake
dynamic loading.
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Figure 2. PDF of mechanical parameters considered in the numerical analysis: (a) PDF of friction angle, (b) PDF of cohesion, (c) PDF of
unit weight, (d) PDF of Poisson’s ratio

7

Waste and Resource Management Effect of geometry and material of
municipal solid waste landfills on
seismic response
Azhari, Isfahani and Heydari

Offprint provided courtesy of www.icevirtuallibrary.com
Author copy for personal use, not for distribution



The fixed boundaries in the static analysis will reflect the
seismic waves into the model. Therefore, to prevent the seismic
shear wave from this phenomenon, the bottom of the model,
where the seismic wave is applied, is considered viscous and
the left and right model sides should be set free, so the waves
are allowed to pass through these boundaries. Figure 3 depicts
the boundary conditions, input wave location and damping
parameters applied to the numerical model.

esh dimensions influence the wave propagation through the
model, and a large mesh dimension leads to wave reflection,
whereas a small mesh dimension results in considerable growth
in the calculation time. The following equation determines the
upper limit of mesh dimensions to ensure proper wave
propagation.

1: lmax ¼ Cs

10fmax
¼ 2:92m

where Cs is the shear wave velocity and fmax is the maximum
frequency of the waves carrying energy. Also, in order to deter-
mine the maximum mesh dimensions, the minimum shear vel-
ocity needs to be taken into account. Due to different elastic
shear moduli (G), the mesh dimensions are defined and con-
sidered for each model separately.

Generally, natural dynamic systems damp a portion of oscillation
energy passing through the system; otherwise, the system would
vibrate constantly when subjected to a dynamic force. To mimic
this phenomenon, an artificial damping is applied to the model.

Proportional Rayleigh damping is typically used in the conti-
nuum analysis of the medium, to damp the natural vibration
modes of the structure. Therefore, for dynamic finite-element
analyses, a damping matrix, C (Equation 2), is formed with com-
ponents proportional to the mass (M) and stiffness (K) matrices
(Itasca Consulting Group, 2014). According to Zekkos (2005),
the density and stiffness of the waste material increase with
depth. Therefore, the damping ratio varies with depth, where the
mean value is assumed for each level of elastic modulus and land-
fill geometry in this study.

2: C ¼ αM þ βK

where α and β are the mass-proportional and stiffness-
proportional damping constants, respectively, calculated from
Equation (3), ω is the natural frequency and ξ is the damping
ratio. The results of the analyses conducted by Elgamal et al.
(2004) suggested an average constant damping of about 5.4%
for MSW, utilised for the current study, and the natural fre-
quency for the MSW models are numerically analysed as 5 Hz.

3: ξ ¼ α

2ω
þ βω

2

2.3.1 Seismic wave input
The seismic load is generalised and simplified as a sinusoidal
waveform, to make the results comparable for different geome-
tries of landfill types and material properties derived from the
numerical analyses. The seismic load for this study is a sinusoidal
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Figure 3. Boundary conditions for dynamic analysis in UDEC (source: Itasca Consulting Group (2014))
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wave with a typical PGA of 1.0g and a frequency of 5 Hz with a
1 s duration that lies in the common range of earthquakes.
Figure 4 illustrates the harmonic wave with a duration of 1 s
applied at the bottom of the model. This wave is chosen based
on typical strong earthquake acceleration time histories (e.g.
Northridge 1994; Canterbury 2010; Christchurch 2011 and
Miyagi 2011). As noted, the AF is a parameter used to examine

the seismic response of landfills during the seismic load; it is
defined as the ratio of the applied earthquake acceleration to the
acceleration recorded on the landfill surface. For this, the wave is
applied to the bottom of the model, and the acceleration on the
top of the model is monitored for calculating the AF (Mitani
et al., 2013; Ruan et al., 2013; Tavakoli et al., 2019; Wu et al.,
2020). According to the literature in most cases, the vertical com-
ponent of the seismic wave is one-third to two-thirds of the hori-
zontal acceleration and has a negligible effect on slope stability
compared with the horizontal components that generate signifi-
cant shear velocity on the slope surface (Dobry et al., 2000;
Frankel, 2000). Therefore, to evaluate the effect of surface accel-
eration better, the interaction of the surface waves from the hori-
zontal and vertical components of the input is overlooked by
only applying the horizontal wave component to the models.

The procedure for generating the models includes defining
the geometry, boundary conditions, discretising and mesh
generation, defining monitoring locations on the model
bottom and slope crest and applying the seismic wave. The
developed models in UDEC are shown in Figure 5. This figure
illustrates the model dimensions, mesh lengths, boundary con-
ditions and monitored locations for acceleration time histories.

3. Results and discussion
To define the AF obtained from the numerical analyses, the
acceleration on the crest of each landfill type is monitored, as
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Figure 4. Sinusoidal earthquake wave applied to the model
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Figure 5. Generated models for six landfill types
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Figure 6. Recorded wave from considered landfills in four levels of stiffness contrast (SC): (a) recorded wave from canyon type, (b)
recorded wave from hill type, (c) recorded wave from side-hill type 1, (d) recorded wave from side-hill type 2, (e) recorded wave from
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shown in Figure 5. The obtained accelerations are then divided
by the input acceleration applied to the bottom of the models
to calculate the AF for each landfill type. These points are
selected because they are expected to have the critical AF, as
discussed in earlier studies (Bourdeau and Havenith, 2008;
Del Gaudio and Wasowski, 2011; Havenith et al., 2002;
Moore et al., 2011; Sepúlveda et al., 2005; Seyhan and
Stewart, 2014). Figure 6 presents the accelerations recorded
on the slope crest for each group of landfills in four different
stiffness levels along with the input wave acceleration.

Before discussing the results obtained, it is expected that
the lower stiffness of the waste material will lead to higher
AFs. However, this lower stiffness results in an increment of
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damping. Moreover, the impact of the slope geometry on the
wave propagation affects the topographical AF. Therefore,
the interaction of the three parameters – stiffness, damping
and slope geometry – affects the resulting AF.

Figure 6 shows a general increase in the wave amplitude in
higher stiffness when there is a soft waste material on the top
of the slope. However, a closer look at the graphs shows a
non-constant trend in the wave amplitudes with stiffness con-
trast growth.

As shown in Figure 1, landfill types can be categorised two
by two in three styles: two-sided slope, side-hill and stepped
types. This section compares the earthquake response of each

style group. Figure 7 illustrates the effect of geometry for each
landfill type at four stiffness contrasts of 1:1, 1:2, 1:10 and
1:20. In general, a wave travelling from high-stiffness to low-
stiffness material causes amplification of acceleration, where
in the cases of a deep low-stiffness waste layer, the acceleration
attenuates, resulting in a lower rate of AF growth. Considering
low stiffness contrasts of 1:1 and 1:2, the stepped-base landfill
type has the minimum and the hill type experiences the
maximum AF due to their smallest and largest waste layer
thickness, respectively. The other reason is the two-sided slope
geometry of the canyon and hill types, causing a degree of
freedom during earthquake load. On the contrary, generally
in high stiffness contrasts of 1:10 and 1:20, the effect of
damping leads to low AFs. As can be seen, there is a
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significant reduction in the AF for the canyon type with high
stiffness contrasts, which is a result of the superposing effect of
damping, waste depth and the wave scattering phenomenon.
Figure 8 illustrates the wave propagation travelling through
high-to-low stiffness in canyon-type geometries.

Figure 9 depicts the AF trend in the considered stiffness con-
trasts for the three landfill groups. As seen in this figure, for
the two-sided types (Figure 9(a)), the hill geometry experiences
a larger AF, due to the thin waste layer; on increasing the stiff-
ness contrast, the AF decreases due to the larger damping
amount, and this reduction is significantly larger in the canyon
type due to the deeper waste layer. Although there is a similar
trend for both of these types, the canyon type shows a signifi-
cantly low AF in larger stiffness contrast. As mentioned
earlier, this phenomenon is expected to be observed mostly in
valleys due to wave diffraction. As shown in Figure 8, the
canyon-type landfill with a low material stiffness behaves
similar to valleys. According to Figure 9(b), the lower thick-
ness of waste in side-hill type 2 causes a sharper increment in
AF compared with the side-hill type 1, whereas for stiffness
contrasts larger than 1:10, the damping effect overcomes the
wave amplification and dramatically decreases the AF for both
side-hill types. Figure 9(c) depicts a general growth in the AF
for stepped-base types and despite the side-hill geometries,
no reduction is observed in high stiffness contrasts. This is
explained by the relatively shallow waste layer compared with
other geometries.

4. Conclusion
Numerical analyses are performed to evaluate the effect of
stiffness contrast and geometry of six typical MSW landfill
types under seismic loading. In general, the results show that
the acceleration may amplify up to 3.6 in hill-type landfills
with low-stiffness waste material. However, landfill types have
significantly different behaviours due to their geometry and
waste material properties, which is due to different interactions
of the damping and wave propagation in various landfill types.
The topographical site effect results in an AF of 1.7–2.3 in
landfills. However, for the hill and canyon types, the maximum
amplification is reached at a stiffness contrast of 1:2, and for
side-hill and stepped-base types at a stiffness contrast of 1:10.
Therefore, the geometry and the disposed waste material for
the landfills should be considered in seismically active areas in
order to control the amplification phenomenon.

It is suggested to study the effect of earthquake frequency and
its ratio with the landfill height on their seismic response in
future studies. Also, the seismic response can be evaluated by
applying large historical earthquakes, such as El Centro, 1940,
Northridge, 1994 and ChiChi, 1999, or harmonic waves such
as Ricker with various amplitudes and frequencies.
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